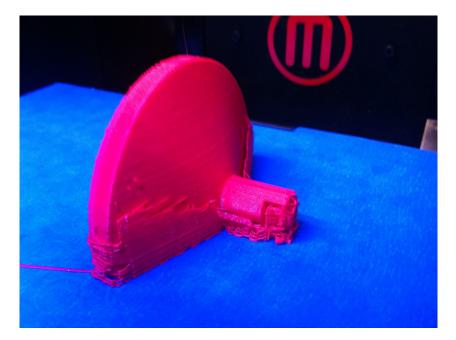
3D Printing for FRC


What are top teams printing and how can you be like them?

Travis Norris, FRC 2423

Printing in FRC has come a long way in 10+ years

2013 Frisbee Indexing Device 2468 - Team Appreciate

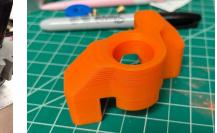
2023 "Diff Swerve" on display at FormNext 88 - TJ^2

Where to Start

A reliable low-cost printer

Prusa Mini Bambu A1 / A1 Mini

A known good filament



PLA+, ProPLA, or similar

A few small parts

Spacers, Low torque gears, pulleys, electronics covers/mounts

Using the right material

PLA+ or ProPLA - The Standard

The best combination of fast printing, improved toughness, and affordability.

Brands vary, so find one you like and stick with it. (Polymaker PolyMax, eSun PLA+, Inland Tough PLA)

Why not PETG or regular PLA? Faster than PETG and less brittle than PLA

TPU - Flexible

Flexible but can be fairly stiff based on infill percentage and part geometry. Useful for shock absorption

Fiber Reinforced - Engineering Grade

Adds stiffness to a very tough material (Nylon or PET). Highly abrasive and more difficult to print

Finding the right printer

Fast - Printers have gotten significantly faster in the last 3 years

Reliable - A requirement for build season

Automated - Bed leveling, filament runout, etc

Connected - Print and monitor remotely

*Multi material - Useful for filament backup (swapping if a spool runs out)

5

Adjusting your print settings

Increase outer walls, top/bottom layers instead of infill (5 of each)

- Most efficient way to add strength

Use the same layer height and preset on prototypes and final parts

- Tolerances will be different between "draft" and "quality" prints

You don't need to push the limit of speed

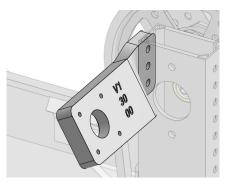
- Defaults are usually well tuned, slow them down for more complex prints

Be conscious of print orientation, because layer adhesion is always weaker

- The bond between layers is weaker than within a single layer

The easy wins

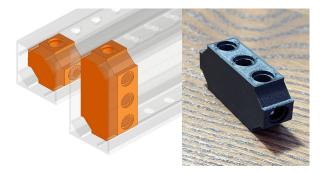
- Low torque gears
- Pulleys
- Electronics mounts
- Spacers


2024 Amp Mechanism 1678 - Citrus Circuits

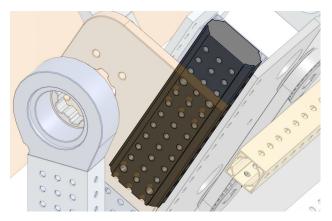
2024 Fun Sprocket Spacer 6329 - The Bucks' Wrath

2023 Electronics Strain Relief 2056 - OP Robotics

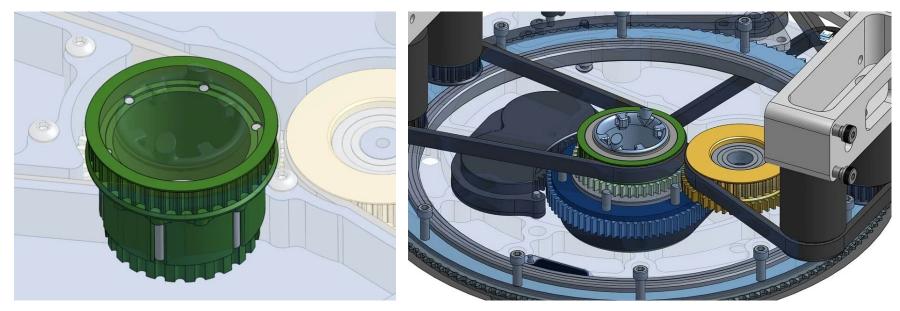
2024 Camera Mount 3467 - Windham Windup


"Steal from the best" with CAD releases, sharing platforms (Thingiverse, Printables, Maker World), or supplier websites 7

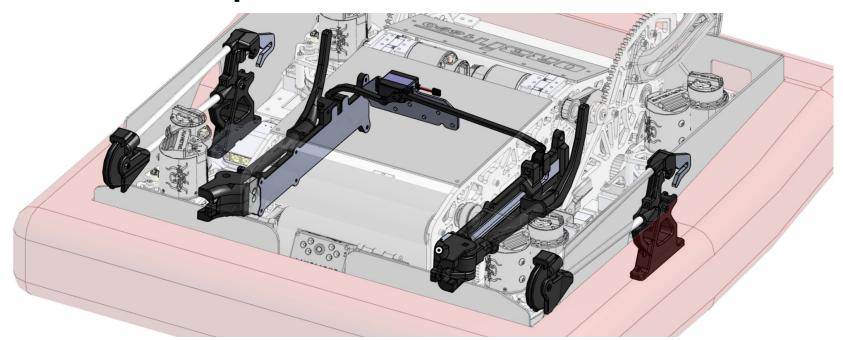
Intermediate additions


- Roller end caps
- Crush blocks

2024 Dead Axle Rollers 6328 - Mechanical Advantage


2022 Max Tube Crush Blocks 5010 - Tiger Dynasty

2024 Max Tube Crush Blocks 2423 - The KwarQs


Advanced components - 2910 Turret Core (2024)

2024 Turret and Teacup Rollers 2910 - Jack in the Bot

Advanced components - 1690 Climber (2024)

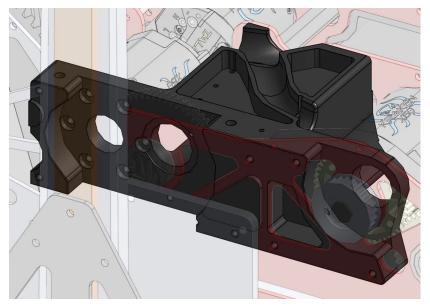
NE NC 2024 Climber and Trap Mechanism 1690 - Orbit

Designing parts for 3D printing

Lightening is less needed

Since infill is already less dense than solid, lightening patterns aren't as beneficial

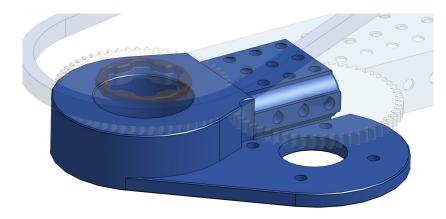
Design in cable management


Add routes for cables, cut outs for zip ties

Don't forget tolerances

Printed parts need >0.1mm for a close fit

Reduce the need for supports


You no longer need to eliminate them entirely but less support = less time and material

2024 Shooter Gearbox 125 - NUTRONs

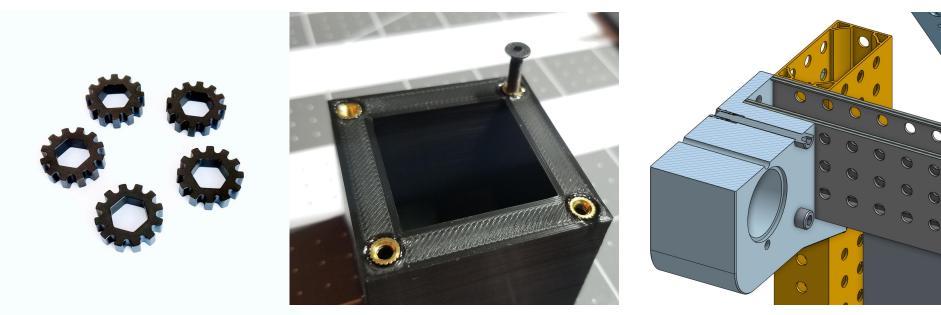
Designing parts for 3D printing (pt. 2)

2024 Shoulder Mount 2423 - The KwarQs

Teardrop horizontal holes

No supports required inside horizontal holes.

Precision in the plane of the build plate


Printers are more precise in XY than Z.

Chamfer the bottom edge

Reduced print quality defects (elephant's foot) and easier to remove from some build plates

Hex inserts, heat set inserts, and reinforcement

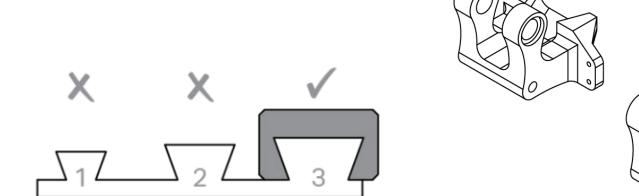
Hardware can reinforce weaknesses in printed parts.

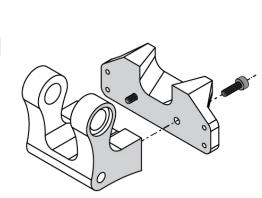
Hex inserts available through Thrifty Bot and WCP. Heat set inserts sold widely

Common pitfalls

Plastic Creep - over time, printed parts will deform if left under tension/compression

Overestimating stiffness - Plastic is much less stiff than aluminum. Be careful with cantilevered forces, gearbox plates, etc.


We can just print a replacement - Have at least 1 on hand, don't just print it at competition

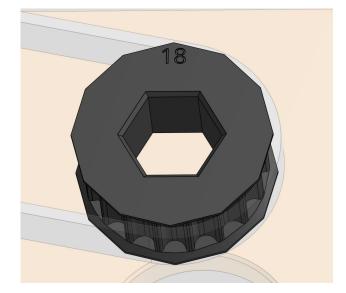


Plastic creep example - new (left) vs used (right)

Avoid re-printing the whole part

Unit test important fits

Split up large parts



Managing Printed Parts

Label them in CAD - emboss/engrave a part number, tooth count, or version

Keep track of your print files - Save your print files (.3mf) for each part so that you know the exact settings that were used

Mark "NOT FOR ROBOT USE" - If you print a test part with less strength, label it (different filament color or with a sharpie)

18T HTD Pulley Robot Belt FeatureScript

Additional Resources

- <u>"What are your favorite 3D printed parts for FRC"?</u>
- Spectrum's 3D printed parts presentation
- 2056 Strain Relief Parts
- Markforged Composite Design Guide
- Youtube channels
 - CNC Kitchen
 - Made with Layers (Thomas Sanladerer))
 - Maker's Muse
 - <u>Teaching Tech</u>

Prototyping

Hype Blocks

https://www.chiefdelphi.com/t/team-5254-3d-printed-prototyping-resources/33559

<u>9</u>

